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On the Number of Solutions of Certain 
Trinomial Congruences 

By Jacqueline Wells and Joseph Muskat 

1. In the course of his extensive investigations into Fermat's Last Theorem, 
H. S. Vandiver considered the number of solutions (x, y) of 

1+axc bye (modp), 

where ce + 1 = p, a prime, and xy 4 0 (mod p). 
If ab 4 0 (mod p), the following is an equivalent formulation: Let g Pe a primi- 

tive root of p. Then determine, for i and j fixed, 0 < i < c - 1, 0 j ? e -1, 
the number of pairs (r, s), 0 < r < e - 1, 0 < s < c - 1, for which the congruence 

(1) 1+? r = Ages (modp) 

is solvable. The number of solutions (r, s) will be denoted by [i, j]ce, or simply by 
[i, j], if c and e are fixed. 

e -1, eeven, i=0, 
e-1 

(2) jj [i j]6ce e - 1, e odd, i c/2, [2] 
j=O 

e, otherwise 

It follows from (2) that [i, j]ce < e. 
For a fixed e and p, let Nk denote the number of the ce-pairs (i, j) for which 

[x j]ce = k. 
Given a fixed i for which 

e-1 

[ix j]ce = e, 
j=O 

then the integers [i, 0], [i, 1], [i, 2], * ..., [i, e - 2], [i, e - 1] form a partition of e. 
The partition e 0 0 * 0 0, where, for a fixed i, there is one j such that [i, j] = e, 
and, for all other j, [i, j] = 0, enters into a criterion for Fermat's Last Theorem 
[3, Theorem 21. 

Erna H. Pearson computed the values of the [i, j] for several values of e and p. 
A list of the cases she considered can be found in [2, p. 1284]. During 1954 and 1955, 
Emma Lehmer, J. L. Selfridge, and C. A. Nicol, with the aid of the SWAC digital 
computer, computed the values of [i, j] for e = 5, 7, p < 1024; e = 11, p < 800; 
e = l3,p < 600; and e prime, 17 < e < 256, p < 512. For each p, the Nk, k = 0, 
1, * , e, were determined, and the occurrences of each of the partitions of e were 
tallied [1]. 

In [1], it was suggested that the values of the Nk and the occurrences of the 
various partitions deviated significantly from what was "expected." To probe this 
situation, we undertook to calculate the [i, j], the values of the Nk, and the oc- 
currences of the various partitions for e = 5, 7, 9, 11, and 13, p < 18,000. We leave 
to the end a brief description of the program. 
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2. We assumed the following probability model: Given e objects, each is to be 
put independently into one of e cells. (We neglect the fact that ours is a sampling 
without replacement situation.) Then the probability that a given cell contains 
exactly k objects is given by the binomial distribution as 

(e)() e - 1)-k 

In the problem considered here, the objects are the e solutions of (1) with i 
fixed. The cells are the values 0, 1, * * , e-1 which j may take. 

Table 1 shows, for e = 5, the expected and the observed occurrences of the Nk, 
k =0, 1) .. * 5. 

For each value of e in the study, the primes p 1 (mod e), arranged in as- 
cending order, were subdivided into several groups. Within each group, the values 
of Nk!(p - 1), for each k, 0 _ k < e, were sorted from low to high and every 
nth value, where n depended upon e, was recorded. For e = 5, the first six primes 
were omitted and the remaining 505 in the study were divided into five groups of 
101 each. In Table 2, every nth value of No/(p - 1), n 1, 21, 41, 61, 81, 101, 
is recorded for each of the five groups. 

Tables 1 and 2, being typical of the tables generated in this study, suggest that 
this probability model approximates the actual situation quite well. Table 2 and 
similar tables indicate that, as p increases, the approximation improves. The full 
set of tables can be found in [4]. 

3. In [1] the occurrences of the various partitions of e among the solutions of (1) 
for fixed i were tabulated. According to the probability model outlined in Section 2, 

TABLE 1 

Proportion Proportion 
expected observedOcurne 

No .32768 .32761 1,419,388 
N1 .40960 .40979 1,775,443 
N2 .20480 .20472 886,952 
N3 .05120 .05115 221,602 
N4 .00640 .00642 27,818 
Nb .00032 .00030 1,317 

Totals 1.00000 .99999 4,332,520 

TABLE 2 
Distribution of No/(p - 1), e = 5, Within Groups 

Group Range of p 1st 21st 41st 61st I 81st 101st 

1 131-3061 .31391 .32432 .32660 .32791 .32983 .33906 
2 3121-6451 .31974 .32588 .32696 .32800 .32919 .33534 
3 6481-10111 .32460 .32597 .32719 .32805 .32881 .33463 
4 10141-14221 .32434 .32652 .32733 .32783 .32883 .33055 
5 14251-17981 .32522 .32688 .32744 1 .32796 .32852 .33126 
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the number of ways of obtaining a particular partition can be calculated as the 
product of the number P1 of permutations of the numbers in the partition times 
the number P2 of permutations of the values of j in one of the P1 permutations of 
the partition. 

P1 =e !/to! t, ! t2! te! 

where t,. is the number of occurrences of n in the partition. 
Let sj denote the number of j's in a particular permutation. Then 

P2 = e!/S12!S! *2 Se-1 - 

Since the probability model has e' equally likely outcomes, the probability of a 
given permutation is given by 

PlP2/e". 

As an illustration, consider, for e = 5, the partition 3 1 1 0 0. This means that, 
for a fixed value of i, P1 expresses the number of arrangements of the j's so that 
there is one j for which [i, j] = 3, there are two j's for which [i, jI = 1, and for the 
other two j's, [i, i] = 0. 

P1 5!/2!-2!.0!.1!-0! = 30. 

One of these thirty arrangements is [i, 2] = 3, [i, 1] = [i, 4] = 1, [i, 0] = [i, 3] 
0. For this case, P2 expresses the number of arrangements of the five solutions of (1) 
so that three of them correspond to j = 2, and one each to j = 1 and j = 4. 

P2 = 5!/0!*1!.3!-0!*1- = 20. 

Clearly, the value of P2 is the same for each of the thirty arrangements. Thus, 
the probability that a given set of solutions forms the partition 3 1 1 0 0 is 

30.20/55 = 600/3125 = 0.192. 

(Note that the denominator of P2 can be obtained by affixing "factorial" sym- 
bols to all the numbers in the representation of the partition and forming the prod- 
uct.) 

The observed and expected occurrences of the various partitions for e = 5 and 
e = 7 are shown in Tables 3 and 4. 

TABLE 3 
Partitions, e = 5 

Proportion Proportion First 
Partition expected observed Occcurrences ocurrence 

5 0 0 0 0 .0016 .001521 1,317 521 
4 1 0 0 0 .0320 .032102 27,800 71 
3 2 0 0 0 .0640 .063968 55,396 41 
3 1 1 0 0 .1920 .191925 166,206 31 
2 2 1 0 0 .2880 .287345 248,839 31 
2 1 1 1 0 .3840 .384966 333,378 11 
1 1 1 1 1 .0384 .038173 33,058 31 

Totals 1.0000 1.000000 865,994 
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TABLE 4 
Partitions, e = 7 

Partition Proportion Proportion Occurrences First 
expected observed occurrence 

7 0 0 0 0 0 0 .000008 .000007 3 9829 
6 1 0 0 0 0 0 .000357 .000363 150 617 
5 2 0 0 0 0 0 .001071 .001013 419 659 
5 1 1 0 0 0 0 .005355 .005349 2,213 239 
4 3 0 0 0 0 0 .001785 .001769 732 421 
4 2 1 0 0 0 0 .026775 .026445 10,941 71 
4 1 1 1 0 0 0 .035699 .(X35593 14,726 113 
3 3 1 0 0 0 0 .017850 .017881 7,398 127 
3 2 2 0 0 0 0 .026775 .026338 10,897 379 
3 2 1 1 0 0 0 .214196 .214878 88,902 43 
3 1 1 1 1 0 0 .107098 .106963 44,254 29 
2 2 2 1 0 0 0 .107098 .107913 44,647 113 
2 2 1 1 1 0 0 .321295 .320731 132,697 29 
2 1 1 1 1 1 0 .128518 .128484 53,158 29 
1 1 1 1 1 1 1 .006120 .006275 2,569 421 

Totals 1.000000 1.000002 413,733 

The probability that a partition is the partition e 0 0 ... 0 0 is l/ee'l. The de- 
viations mentioned at the end of Section 1 were apparently due to overlooking P2 

in computing expected occurrences. 

4. The solutions of (1) were obtained on the University of Pittsburgh's IBM 7070 
computer. The program differed in several respects from the program for the SWAC 
computer described in [1], as a much larger memory was available. 

For e = 5, 7, 9, 11, and 13, cards containing primes p 3 1 (mod e) and the least 
primitive root g of p were available from a previous study. Mr. Dale Isner of the 
staff of the University of Pittsburgh's Computation Center supplied a program 
which generated a list of the partitions of p. 

A modified index table was generated as follows: 
For each 9 ~ g2 93 ... qk (p-1)/ 2 reduced modulo p, were generated. If 
n =_ gk (mod p), 0 < n < p, then k, reduced modulo e, was stored in cell IND + 
min{n, p - n}. 

The values of gi+rc reduced modulo p, were then generated. For each i having e 
values of i+r t4 - 1 (mod p), consider rn g=+rc (mod p), 0 < m < p - 1. If 
rn < (p - 1)/2, the number (value of j) in cell IND + m + 1 was found and 
stored in a list of solutions. If m ? (p - 1)/2, the number in cell IND + p 
- in - 1 was stored in the solution list, as for e odd, 

ind(m + 1) ind(p - m - 1) (mode). 

For each i, the solution list was analyzed to determine the appropriate partition, 
and the relevant counters were tallied. 

The results of the main program have been deposited in the UUMT file. For each 
e, e = 5, 7, 9, 11, and 13, the primes p 1 (mod e), p < 18,000, are listed, with 
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the values of Nk , 0 < k < e, and the number of occurrences of the various parti- 
tions of e into which the solutions are grouped. 
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Tables of Values of Three Infinite Integrals 

By Chih-Bing Ling and Hsien-Chueh Wu 

Sometime ago, the senior author [1] evaluated the following two integrals to 
five decimal places for integral values of m and p up to 15 and 8, respectively. 

____ 
gox mdx 

I(mp) = 2P(m sinhx (m ? p ? 1) 

J~m~p) = 

1 
GoxM dx 

2P(m!)Jo coshPx (m>O.p_1) 

Two particular integrals I(m, mn) and I(m, m - 1) were further evaluated by 
Nelson and the senior author [2] to seven decimal places for m = 1(1)40. Nelson 
also evaluated these two integrals for the same range of values of m to 12D and 
18D, respectively, in two papers [3], [4]. 

In the present paper, the two preceding integrals will be evaluated to 8D for 
m and p up to 25 and 12, respectively. The same method of evaluation will be used. 
The various sums of inverse powers required in the computation were tabu- 
lated to 32D by Glaisher [5], [6], and also appear in two well-known mathematical 
tables [7], [8]. The results are shown in Tables 1 and 2. Table 3 shows the factor 
2P(m !)/pm+l, also to 8D. 

In addition, the following integral will also be evaluated to 8D for the same 
range of values of in and p. 

(2) S(m' P) fs XP (m ? p ?1). 

The integers m and p are restricted as indicated, and S(2m, 1) is to be excluded on 
account of its divergence. This last integral occurs in certain branches of mathe- 
matical physics, and on that account it was thought desirable to include a table of 
its values. 

Received January 11, 1965. 


	Cit r98_c99: 


